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The drag on a cloud of spherical particles 
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A formula for the drag exerted on a cloud of spherical particles of a given particle 
size distribution in low Reynolds number flow is derived. It is found that the drag 
experienced by a particle depends only on the first three moments of the distribu- 
tion function. A treatment of viscous interaction between N particles to the 
lowest order is carried out systematically. By appealing to the concept of 
‘randomness ’ of the particle cloud, equations describing the averaged properties 
of the fluid motion are derived. The averages are formed over a statistical ensemble 
of particle configurations. These mean flow equations so obtained are in a form 
resembling a generalized version of Darcy’s empirical equation for the motion of 
fluid in a porous medium. The physical meaning of these equations is discussed. 

1. Introduction 
The problem of determining the viscous drag force exerted on a cloud of 

spherical particles in low Reynolds number flow has been the subject of many 
theoretical and experimental works for many years (see Happel & Brenner 1965 
for references). As yet there does not seem to be available any satisfactory 
theoretical result which gives the drag force in a particle cloud of a prescribed 
spectrum of particle sizes. In the special case when all the spherical particles of 
the cloud have the same radius a widely quoted theory was given by Brinkman 
(1947). However, in his original treatment Brinkman employed the model of 
a spherical particle embedded in a porous medium. He described the flow through 
this porous mass by a modification of Darcy’s equation. Since the latter equation 
is empirical, Brinkman’s result has not been generally regarded as a completely 
rigorous theoretical solution to the problem even though by comparing with 
experimental data the success of Brinkman’s formula is indisputable. 

The aim of this paper is to consider slow viscous flow past a large collection of 
spherical particles of a given size distribution and to derive a particle drag 
formula free from empirical assumptions. In our present treatment we base our 
formulation on the Stokes equations, a ‘point-force ’ approximation which we 
will explain in the appendix, and a certain statistical concept which has been 
widely used in multiple wave scattering problems (see Foldy 1945; Keller 1964). 
The essence of the point force approximation is to replace the disturbance pro- 
duced by a sphere in low Reynolds number flow by that of a point force located at  
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the centre of the sphere. The force is taken to be equal in magnitude but opposite 
in direction to the drag on the particle. By means of this approximation we will 
first derive a set of self-consistent equations governing the viscous interaction 
between a large number of particles. On taking the ensemble average of this set 
of equations we obtain averaged equations describing the mean fluid flow with 
particles embedded in it. The mean flow equations turn out to be in the form of 
a generalized Darcy’s equation. By inserting a test particle in the mean flow and 
by calculating the averaged flow field around it we obtain a drag formula for 
the particles. This formula is found to depend only on the first three moments 
of the particle number density distribution function and thus can be computed 
readily for any given particle size distribution. 

In 8 6, the physical meaning of the mean flow equations is discussed in relation 
to Darcy’s equation. We hope that this short discussion will help to provide 
a view of Darcy’s empirical equation from a different standpoint and thus lead 
to a better understanding of fluid flow in porous media. 

2. Statistical consideration 
Let us now consider the question of the drag experienced by a cloud of N 

particles in low Reynolds number flow. If N is a small number then the problem 
can be handled by a straightforward extension of the technique outlined in the 
appendix. However, if N is large this technique of summing up directly the 
disturbances produced by all particles except the one in which we are interested 
becomes not only difficult but is also meaningless. When we have a cloud of 
particles it is, first of all, an almost impossible task to assign a definite position 
to each particle. Further, if the size of the particles are not the same it is also 
very unlikely that we can specify the size of a certain particle located at a certain 
position in space. The best that we can do is to characterize the cloud of particles 
by its statistical properties. Por instance, if CT denotes the radius of sphere, then 
we can describe the size distribution of the cloud of spherical particles by a size 
distribution function n(x ,  a) such that n(x, a) da  is the fraction of the number 
of particles with radius in the range CT to a + d a  in the neighbourhood of x. 
Equivalently, the probability of finding a particle in the neighbourhood of x 
with radius a to da is proportional to n(x, a) da. As is well known from statistical 
mechanics, if the number of particles is sufficiently large the many-body problem 
can become greatly simplified since statistical concepts can then be applied. In  
the present problem the same situation arises. But before we go any further it is 
necessary to define clearly certain statistical quantities which we will use in the 
next few sections. 

Let us denote the positions and radii of the N particles by xl, x2, x3, ..., x,, 
al, a2, as, ..., aN. Here we will consider the parameter a to be continuous. The 
probability that the set of N particles will be located in the volume element 
dx,, dx,, dx3, ..., dx, with radii in the region a,, a2, ..., CT, is given by 

 XI, x g ,  . . . , x,; al, uZ, . . . , a N )  dx, dx,, . . . , dx,, da,, da2, . . . , da,. 

We will refer to the space formed by xl, x2, . . . . xN, al, a2, . . ., aN as configuration 
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space. The probability distribution of a single particle may be obtained by 
integrating over all other particles in the configuration space, e.g. 

$)(XI, a1) = I$)(x1, x2, * * * 7 X N ;  a 2 2  * .  ., ah7) dx2, d X 3 ,  * * * 7 da2, da3, * * * > dgN. 

In  what follows we will make t,he assumption that the distribution of particles 
is random, that is: 

p(xl, x2, * - * >  X N ;  a2, VAT) = c1)p(x2, a2).**p(xh7, cN). 

This assumption cannot be rigorously correct for spherical particles of finite 
radius, i.e. it is correct only when the particles are points that occupy no space 
at  all. However, as we will soon use a point force approximation (see appendix) 
by assuming that the disturbance produced by a particle can be approximated 
by that produced by a point force, we feel that the two assumptions are at  least 
compatible with each other and there is no reason to make things more compli- 
cated at  this stage. (We expect this assumption to break down when the volume 
concentration of particles is too large.) 

The ensemble average of a quantity $ will be defined as 

= x2, * * . )  xN; a2> ' ' ' 7  u N )  $(x; x27 .'.> xN; ...> a N )  

ax,, axz7 . , . , axN, dal ,  da,, . . . , d g N .  
Also 

($(l)(z))p(x~~ = lp(xl, x2, xN; a2, ...) a N )  dx3, 

du,, . . . , &TAT. 

It is to be noted that probability distribution under the above assumption 
may be related to density distribution by 

4x7 4 = Np(x ,  4, 
where n(x, a) d a  is the fraction of number density of particles with radii between 

and a + d a  in the neighbourhood of x. 

3. Fundamental equations 
We will now list explicitly the two important assumptions we want to make 

before we proceed to derive the fundamental equations of particle interaction 
in slow viscous flow. (i) The disturbance produced by a particle is to be approxi- 
mated by that of a point force located at  the centre of the spherical particle. 
The force is taken to be equal in magnitude but opposite in direction to the drag 
on the particle. (ii) The drag experienced by a particle is approximately directly 
proportional to the unperturbed velocity of the fluid (as seen by the particle) 
at the centre of the particle. (This includes the fluid velocity in the absence of all 
particles and the perturbed fluid velocities due to all other particles.) 

The same approximations are used in the appendix. By assumption (ii), we 
can write 

Drag = D ( g )  &, 
(we will use subscript index i a n d j  to denote a vector in this section) where Ui is 

(1) 
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the unperturbed fluid velocity at the centre of the particle (in the sense of assump- 
tion (ii)) and D ( g )  is a coefficient which depends on the size of the particle and the 
statistical properties of the N particles. At this stage the dependence of D on CT is 
still unknown and in fact it is our aim to find it. 

Let U&x, xn) be the velocity of fluid in the i th direction at x, due to a point 
force of unit strength in the j t h  direction at the point x,. The exact expression 
for qj(x, x,)? can be obtained from (A 4). Also denote by q.(x, x,) the corre- 
sponding pressure, so that qj, $. satisfy Stokes’ equation in the following form 

(repeated subscripts indicate summation). 
By means of assumptions (i) and (ii) the fluid velocity and pressure at  a point x 

(4) 
is equal to N 

Q(x) = U?)(X)- C G : F ) U , j ( ~ , ~ n ) ,  
n= 1 

N 

p(x) = ~ ( O ) ( X )  - C G $ ) ~ ( x ,  x,), 
n= 1 

where U(O)(x), p(O)(x) are the fluid velocity and pressure in the absence of the 
particles. GF) is the drag on particle n in the i th direction, 

where 

GY) = D(gn) U:ffl’(x,), 

U ~ ) ( X )  = UC,D)(x) - Z’ G:m)L$j(~, xm). 
m 

(C‘ means that the term m = .n is to be omitted from the summation.) In other 
words, U(zn)(x,) is the unperturbed fluid velocity as seen by particle n. 

It is to be noted the UT)(x) is not singular a t  x = x, even though U,(x) is. 
By substituting (6) into (4) and ( 5 )  we obtain the fundamental equations of 

particle interaction in low Reynolds number flow. 

U,(X) = U?)(X) - C D, U?)(X,) qj(x, xn), 

~ ( x )  = P“’(x) - C Dnup)(xn) q(x, xn), 

U(zn)(X) = U f ) ( X )  - Z‘D,, up(xm) 7&(x, Xm). 

(8) 

(9) 

(10) 

n 

n 

m 

This is a set of self-consistent algebraic equations through which the fluid velocity 
and pressure as well as the drag on each particle can in principle be found if a way 
is specified (e.g. as in the appendix) to relate U(zn)(x) to the drag on particle n. 

4. Averaged fluid equations 
Equations (S), (9) and (10) as they stand do not in any way help us towards 

solving the present problem. The direct method of the appendix would be a t  
this stage, to solve the set of equations contained in (10) and then determine the 

t Note that Uu(x, x,) is a function only of x-x,. 
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fluid velocity and pressure from (8) and (9). However, here we will adopt an 
alternative method which has been used extensively in multiple wave scattering 
problems (see Foldy 1945; Lax 1951; Twersky 1964). In  this method we take the 
ensemble average of (8) and (9) over the whole configuration space to obtain 
formally 

dx,dg,, (11) 
n(x,, a,) 

N (U,(X)) = U ~ ) ( X )  - x D,( U ~ ) ( X ~ ) )  &j(x, x,)  

n(x,, gfi)dX,dcT,. (12) 

11. ss 
( P W )  = P‘OW - xssD,(u~:!;(x,))Pj(xj  x,) N 

The quantity (Uy)(x,))  on the right-hand sides of (1 1) and (12) is the averaged 
fluid velocity as seen by particle n. It differs from the averaged fluid velocity 
( q ( x , ) ) t  by a term of order 1/N. If N is a large number then a good approxima- 
tion is to substitute ( q ( x , ) )  for (UfQ(x,))  in the right-hand sides of (11) and (12). 
Here we will assume that this is valid although we cannot prove it to be so. 
On making this approximation we obtain two integral equations for (U,(x)) 
and ( H X ) )  (U,(x)) = up(x) -pyx,) (u,(x,)) q j ( x ,  x,) ax,, 

( P W )  = P ( O W  - JW,) < u , ( X , D  q x >  X n )  dx,, 

where F ( x )  = J%(x, G) D(a)  d f t .  (151 

(13) 

(14) 

Let us now apply the operators of Laplacian, gradient and divergence to (13) 
and (14). With the help of (2) and (3)) a straightforward computation shows that 
(U,(x)) and ( ~ ( x ) )  satisfy the following differential equations. 

PVZ(U(X)) - V ( P ( X ) )  = W )  (U(X))> (16) 

V . ( U ( x ) )  = 0. (17) 

Equation (16) is in the form of a generalized Darcy’s equation which describes 
the flow of fluid in a porous medium. It is, of course, no great surprise that the 
mean fluid equations turn out to be in this form. After all, a particle cloud is 
a form of porous medium. 

5. The drag formula 
In this section we want to make use of the mean flow equations (16) and (17) to 

obtain a drag formula for a spherical particle in a homogeneous isotropic particle 
cloud. For this purpose let us imagine a test particle of radius c~ to be added to 
the cloud of particles. Also let the mean fluid velocity before the addition of the 
test particle be equal to U, dz. Then outside the spherical particle the mean fluid 
flow is described by (16) and (1 7) which can be written as 

where 

n(cT) is the number density distribution of the particle cloud. 
t Note (U,(x)) is non-singular at x, while U,(x) is. 
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By integrating (1) over the configuration space of all particles except the one 
the drag of which we wish to know, we obtain (for the test particle) 

Drag = D ( a )  U,dx. (21) 

The boundary conditions on (U) are: (a)  (U) -+ !Joex away from the test 

A solution of the aforementioned equations and boundary conditions is 
particle; (b)  ( U )  + 0 on the surface of test particle. 

A + a2B 
(23) 

where A = - $aU0 eau, 

UO a B = ~ ( -a2a2+ 3(ea'- 1 -aa)). 
2a2 

By means of (22) and (23) the drag on the test sphere can be calculated which 
together with (21) gives 

Now we can multiply (24) by n(a) and integrate over a and solve for a. We 
obtain 

D ( a )  = BT,UC( 1 f ag  + +(a2a2)). (24) 

9 (25) 
(67rm2 + [367r2mE + 247rrm,( 1 - Sc/2)]*} 

a =  
(2 - 3c) 

where m,, m2, m3 are the first three moments of the distribution function %(a), 

m, = In(a) P ~ C ,  (26) 

c = +7rm3 = volume concentration of particles. 

For a given distribution of particles n(a) the drag on a particle of radius a can 
now be calculated from (25), (24) and (21). 

In the special case where all the particles are of the same size, say of radius a, 
the drag formula becomes [ 4 + 3c + 3 4 (  8c - 3c2) 

Drag = 67rpa 
(2 - 3c)2 

= 67r,ua(UO) A". (27) 

Equation (27) was derived by Brinkman (1947) from a different starting point. 
Figure 1 shows a comparison of (27), Brinkman's formula, with experimental 
values given by Happel & Epstein (1954). Over the range of values of c where 
the basic assumptions used in obtaining (27) seem to be valid the agreement with 
experimental data is good. Equation (27) diverges as c -+ 3. At this value of c the 
particles are packed very close to each other. This, as expected, indicates the 
breakdown of the original assumptions of the point-force approximation and 
no particle-particle correlation. Except for this limitation the present derivation 
not only serves to provide a generalization of Brinkman's result but also tends 
to strengthen its theoretical value. 

t We interpret this as the most probable flow field around the test particle. 
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FIGURE 1. 0, experimental data, Happel & Epstein (1954); 
-, equation (27), also Brinkman (1947). 
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6. Discussion 
In  this section we will try to understand the physical meaning of the mean 

fluid equations (16) and (17). The concept of permeability as introduced by 
Darcy does not seem to help us at  all. In  fact we tend to believe that if we try 
to interpret the effect of the linear term on the right-hand side of (16) by this 
concept we would probably have obscured its true significance. We feel that the 
real physical meaning of (16) and (17) can best be found by examining their 
fundamental solution. If a point force of magnitude D is applied at  the origin 
inside a homogeneous isotropic cloud of particles then the averaged fluid velocity 
according to (16) and (17) is given by 

F(x)  = constant = pa2, r = distance from origin. 

It is clear from (28) (cf. (A 4)) that the effect of the linear term on the right-hand 
side of (16) is to screen out any disturbances that happen to be produced inside 
the fluid. In  fact a closer examination will show that the transverse velocity 
componentst are effectively confined within a distance l/a (screening distance). 
For distances larger than l/a only the longitudinal velocity components matter. 

t If U = Vy3 + V x A, transverse components refer to the second term. 
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Thus if the length scale of interest is larger than the screening distance we may 
neglect the transverse velocity components altogether. That is to say we can 
approximate (16) and (17) by 

- V(P) = ,ua“U>, 
V.(U) = 0. 

(It can easily be shown that the term ,uV2(U) does not contribute to the longi- 
tudinal velocity components.) We note that these are just Darcy’s original equa- 
tions for the flow in a porous medium. Here we have‘rediscovered’ them through 
Stokes’ equations and several other physical arguments. Though Darcy’s 
equation is well known we hope that by deriving it in this fashion a deeper insight 
into the meaning of the equation has been gained. 

The author wishes to thank Professors J. E. McCune and M. A. Hoffman for 
some valuable comments on this paper. This work was supported by the Ford 
Foundation. 

Appendix 
In this appendix we want to examine the point force approximation in a 

quantitative manner. We will compare results obtained by using this method 
with that given by known exact soIution of Stokes’ equation. Our purpose is not 
only to outline the present technique but also to show the rather astonishing 
accuracy such a simple approximation can give. 

FIGURE 2. Flow past two spheres. 

Stimson & Jeffery (1926) found an exact solution to the problem of Stokes 
flow past two spheres. The centres of the spheres are aligned in the direction of 
the flow. Let us examine this problem within the context of the point force 
approximation. We will denote the two spheres by A and B and their drag by 
D, and D, respectively. In considering the drag on sphere A we will first replace 
sphere B by a point force as in figure 2. Now to find D, we need to solve the follow- 
ing boundary-value problem : 

ruV2U-Vp = D B 6 ( ~ - d ) & ( y ) & ( z )  gZ, (A 1 )  

v.u = 0, (A 2) 
where U, p and ,u are the fluid velocity, pressure and viscosity respectively. The 
boundary conditions are the usual no slip conditions on the surface of sphere A 
and U -+ U, away from the sphere. 
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The solution of the above problem is rather simple if we make use of the funda- 
mental solution of Stokes’ equation corresponding to a point force in the x direc- 
tion at  x‘, namely D (x-2’) p = -~ 

47r Ix- x’p’ 

D (z - x’) (x - x’) 
u = -  87rp (- Ix-X’J  f ? x +  , X - X ’ F )  

where D = magnitude of the force. All we need is to find a homogeneous solution 
to Stokes’ equations which tends to zero away from the sphere and which 
when added on to (A 4) and the uniform flow Uo ex will satisfy the no-slip condition 
on the surface of the sphere. Such a solution is available in Lamb (1945). Lamb’s 
general solution is an expansion in orthogonal spherical harmonics which we 
can make full use of in the following way. If we expand the unperturbed velocity, 
as seen by sphere A ,  on its surface in terms of spherical harmonics and match it 
with Lamb’s solution so that the no-slip condition is fulfilled we can readily 
show from this solution that the drag on the sphere is given by 

Drag = 67rpaU (unperturbed) mean over surface of sphere, (A 5) 
where 

U,,,, (unperturbed) = - U(a ,  8,$) unperturbed dQ. 
47~ ‘s all solid angles 

By using (A 3) ,  (A 4) and (A 5) and after straightforward integration we have 

Similarly for sphere B we have 

DB = 6 ~ , ~ b U o + -  2 ( 3d3 b3 d ” )  DA. 

We can solve (A 6) and (A 7 )  simultaneously for D, and DB. If a = b we have 

We note from (A 5 )  that a further approximation can be made if we take 

U,,,, (unperturbed) = U(unperturbed) at  centre of sphere, 

= Uo gX + disturbance from other sphere. 

On proceeding as before, instead of (A 7) we will obtain 

67rpaU0 
D A = D  - = 6npaU0h’. - 1 + #(a/d) 

Table 1 shows a comparison of the values given by (A 8) and (A 9) and that of 
the exact values of Stimson & Jeffery. It can be seen that the numerical agreement 
is good for almost all distance of separation of the two spheres. With this example 
in mind we feel a bit confident that this point force approximation would give 
satisfactory results for our present intended purpose. 

35 Fluid Meoh. 38 
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d/2a 
1 
1.543 
2-352 
3.762 
6.132 

10.068 
co 

L C t  

0.645 
0.702 
0-768 
0.836 
0.892 
0.931 

1 

h 
0.593 
0.681 
0.761 
0.835 
0.891 
0.930 

1 

A’ 
0.571 
0.673 
0.758 
0.834 
0.891 
0.930 

1 

TABLE 1. (A,,,, is from Stimson & Jeffrey (1926).) 
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